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Abstract 
Recently there has been a surge of interest in using structural 
priming to examine sentence production.  We present an 
analogical model of sentence production that exhibits 
structural priming effects.  It uses analogical generalization to 
acquire abstract language patterns from experience. To 
construct utterances, it uses analogical retrieval to find 
semantically similar utterances and generalizations, and 
constructs a new sentence by analogy to them.  Using the 
stimulus generator of Chang et al (2006), we show that this 
model can exhibit structural priming effects similar to those 
observed in humans, but with orders of magnitude less prior 
experience than required by a previous simulation. 

Keywords: structural priming; sentence production; syntax 
acquisition; analogy. 

Introduction 
  What mechanisms underlie sentence production? In 

particular, how do speakers choose among the multiple 
grammatical forms that are capable of expressing something 
they intend to convey? Recently, there has been a surge of 
interest in structural priming as a way to examine sentence 
production processes in adults and children (Bock, 1986; 
Bock & Griffin, 2000; Chang, Dell, & Bock, 2006; Kaschak 
& Borreggine, 2008; Savage et al., 2003).  In structural 
priming, the structure of one sentence is repeated in the 
structure of a second sentence (Bock, 1986). Structural 
priming occurs without any intention to create syntactic 
parallelism. It does not require semantic or thematic overlap 
between the utterances, although the effects can be stronger 
when lexical items are repeated, and sentences are 
semantically similar (Branigan, Pickering, & Cleland, 2000; 
Goldwater et al., 2011; Hare & Goldberg, 1999; Pickering 
& Garrod, 2004; Snider, 2009).  

To illustrate, consider a scene of a man giving cake to his 
son. It could be described either by a double object dative 
construction (DO), as in 1, or by a prepositional dative 
construction (PP), as in 2.    

1. The man gave his son some cake.  
2. The man gave some cake to his son. 
If an experimenter describes this scene with the DO (the 

prime utterance), and then shows a picture of a girl telling 
her friend a story, structural priming would be shown by the 

increased likelihood that the participant's description of the 
scene (the target utterance) would use a DO as in 3 (rather 
than a PP as in 4). 

3. The girl told her friend a story 
4. The girl told a story to her friend. 
Structural priming is seen as evidence of abstract syntax 

because it can operate across semantically different 
utterances and across intervening sentences (Bock, 1986; 
Chang, Bock, & Goldberg, 2003; Thothathiri & Snedeker, 
2008). Thus the development of structural priming in 
children has been used to mark the development of syntactic 
abstraction (e.g., Savage et al., 2003). Indeed, Chang et al. 
(2006) have gone even further to suggest the mechanisms 
underlying structural priming are the same mechanisms 
involved in learning grammar. Pickering and Garrod (2004) 
additionally suggest that structural priming is one 
mechanism by which conversational fluency between 
interlocutors is achieved. 

Two highly influential models, by Chang et al. (2006) and 
by Pickering & Garrod (2004), each account for many of the 
phenomena of structural priming. However, Goldwater et al. 
(2011) have shown that some phenomena of structural 
priming can best be captured by using the mechanism 
underlying analogical reasoning—structure-mapping 
(Gentner, 1983; Gentner & Markman, 1997). Our aim here 
is to explore an alternate approach that models structural 
priming as a species of analogy.  This paper describes an 
initial computational model, based on the analogical 
processes of matching, generalization, and retrieval.  To 
provide a solid basis for comparison, we use the 
experimental design and stimulus generator developed by 
Chang et al (2006).  We begin by summarizing the 
psychological experiments and the Chang et al (2006) 
model.  We then describe our analogy-based simulation, 
including its structure and operation.  The results of three 
simulation experiments are presented.  

The Chang et al. dual-path model 
In a typical structural priming experiment (e.g., Bock & 
Griffin, 2000) participants alternate between prime trials, on 
which they hear and then repeat a sentence, and target trials, 
on which they are given a depicted scene to describe in any 
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way they choose.  For example, in Bock and Griffin’s 
(2000) Experiment 1 there were 48 such sequences. Any 
prime sentence would be in one of two syntactic alternates, 
e.g., the DO or PP dative, and the dependent measure is the 
frequency of matching the structure of the prime in the 
target scene description vs. using the alternate structure.  

Chang et al. (2006) present a connectionist model of 
sentence production, the dual-path model, which simulates a 
number of structural priming phenomena.  The architecture 
of their model includes one system for representing the 
message, that is, the meaning of the sentence, and a second 
system for producing sentence structure from the message. 
Before simulating structural priming experiments, the model 
was trained with 60,000 message-sentence pairs, each 
consisting of a meaning and a sequence of words that the 
meaning maps to.  Using error-based learning, the model 
learned to produce grammatical word sequences when given 
a message.  

The model was then tested on simulation experiments that 
mirrored a typical structural priming experiment.  In the 
prime trials, the model received both a message and a 
sentence structure. In the target trials, only the message was 
given to the model.  On every prime sentence, the weights 
between nodes in the sequencing system were updated 
based on prediction error, just as in training. 

The stimulus-producing grammar consisted of a set of 
message-sentence templates corresponding to the kinds of 
constructions used in the experiments (see Table 1 for 
examples). Random satisfactory fillers were chosen from a 
small fixed lexicon of concepts and bound to empty abstract 
thematic role slots in the message portion of the template, as 
well as to the event-semantic categories indicating the tense 
(e.g. present, past) and aspect (e.g. progressive) of the event 
represented. Their model uses a XYZ thematic role 
representation scheme, wherein the roles roughly 
correspond to agent, theme/patient, and recipient/location, 
respectively. The corresponding word strings for the 
concepts in the message were then bound to corresponding 
slots in the sentence template.  Finally, a small set of 
transformations (e.g. morphemes for tense) were applied to 
produce grammatical sentences for the given sentence type.   

Every structural priming test set took 100 prime–target 
message pairs. Each target message was presented twice, 
preceded each time by a prime with the same message but 
with a different syntactic alternate. There were two versions 
of each target message, each with a built-in bias towards one 
of the alternates, creating 4 trials for every prime-target 
message pair, yielding 400 total prime-target trial 
sequences. 

Chang et al. (2006)’s model was able to capture several 
key phenomena. They simulated priming both the dative 
alternation and the passive/active alternation. These 
constructions remained primed across multiple filler items 
between prime and target, as in human findings (Bock & 
Griffin, 2000). (see Table 1 for examples).   The dual-path 
model was used to simulate a number of other phenomena 

that we eventually plan to simulate as well, but these are our 
current focus. 

The success of the dual-path model in simulating 
structural priming phenomena is very impressive. It has set 
a standard against which future models of structural priming 
will be measured. We use this model as a basis for 
calibrating our analogically based model, showing that we 
can capture some of the same phenomena with many fewer 
training examples. 

Analogical learning and priming of 
constructions 

Our model uses analogical processing in both the training 
phase and the priming phase. Training is modeled as 
analogical generalization (using SAGE, as described 
below). During testing, when a target message is presented, 
analogical retrieval (via MAC/FAC) is used to retrieve 
utterances (or generalizations) from memory with similar 
meaning to the target. Then analogical mapping (SME) is 
used to map their sentence structure onto the target.  

We now review the components of our model. The major 
components—SME, MAC/FAC, and SAGE—were 
developed prior to this study, and have been shown to be 
useful in modeling other analogy-driven phenomena. We 
begin with SME, which underlies the others. Then we 
discuss analogical generalization via SAGE, which serves 
here as the model of prior language learning. Finally, we 
turn to retrieval, which (along with mapping) is used to 
model priming. 

Mapping: The Structure-Mapping Engine (SME) 
(Falkenhainer et al 1989) is a computational model of 
Gentner’s (1983) structure-mapping theory of analogy.  Its 
inputs are base and target structured representations.  Its 
output is one or more mappings that describe how the two 
descriptions can be aligned.  Each mapping consists of a set 
of correspondences linking elements from the base and 
target, a score based on the degree of overlap between them, 
and candidate inferences that represent hypotheses about 
what elements in one description could be projected to the 
other, based on the correspondences for that mapping.  SME 
is used as a component in the other two analogical 
processes, and is also used here to generate word sequences 
to describe new utterances. 

Retrieval: MAC/FAC (Forbus, Gentner, & Law, 1995) 
models similarity-based retrieval over structured 
representations.  Its inputs are a probe case and a case 
library.  The first stage of MAC/FAC rapidly retrieves up to 
three candidate matches using a crude parallel vector match, 
where the vectors are automatically constructed from the 
structured representations.  The second stage uses SME in 
parallel to compare the probe to the structured 
representations for the candidates produced by the first 
stage, returning the best mapping (or up to three, if very 
close) as the reminding for that probe.   

Generalization: SAGE (Kuehne et al., 2000) models 
analogical generalization. It begins by storing the first input 
example (here, a message-sentence pair). When the next 



example arrives, SAGE compares it to the first one, using 
SME. If there is sufficient overlap (that is, if SME’s score is 
above a pre-set threshold) the common structure is stored as 
a generalization.  SAGE uses MAC/FAC to retrieve 
generalizations and/or examples similar to new inputs.  New 
examples are assimilated into existing generalizations if 
sufficiently similar, and the generalization is updated based 
on their common structure.  Otherwise, if the new example 
is very similar to a retrieved example, a new generalization 
is formed from their common structure.  Finally, if the new 
example is not sufficiently similar to anything retrieved, it is 
stored separately, and may serve as a seed for another 
generalization later. 

In essence, this process of progressive alignment leads to 
the gradual wearing away of the non-overlapping aspects of 
the examples. SAGE’s generalizations are structured 
representations. They may also include some specific 
features, though generally many fewer than in the input 
representations.  No variables are introduced. Further, the 
assimilation process produces probabilities attached to each 
statement in the description, indicating its frequency within 
the generalization.  For each concept to be learned, the set of 
generalizations and exemplars learned so far constitutes its 
generalization context.  

An Analogical Model of Structural Priming 
In our model, target utterances are produced by retrieving 

utterances (or generalizations) from memory whose 
meaning is similar to that of the target, and mapping their 
sentence structure on to the target utterance’s meaning. 

The system’s memory has a short-term as well as a long-
term component, in order to simulate the greater availability 
of more recently encountered utterances. A buffer of 
messages, each linked to its sentence representation, is 
stored in the system’s Short Term Memory (STM); these 
serve as priming utterances, as well as “filler” or distractor 
utterances. Given the message of a target utterance as input, 
the system uses analogical retrieval with the STM as the 
case library to find similar messages. Failing to find a 
semantically similar utterance in STM, the system uses 
MAC/FAC with the system’s LTM as the case library.  The 
LTM consists of the SAGE generalization context, that is, 
the generalizations and ungeneralized exemplars produced 
during the training phase (described below).  SME is then 
used to infer a sequence of words that situates the actors and 
objects of the target utterance’s meaning in their 
corresponding roles. 

Returning to the prior example, the intended behavior of 
the model is as follows: The system is given a 
representation of an event in which a girl is telling her friend 
a story. In the structural priming condition, the STM 
contains meaning-sentence pairs.  The presence of a prior 
utterance expressing a transfer of cake from father to son in 
the double-object dative (DO) form “The man is giving his 
son some cake”, should lead to an increased likelihood for 
the system to produce the utterance “the girl is telling her 
friend a story”, rather than “the girl is telling a story to her 

friend”. Absent a priming example of this kind, the system 
should still be able to produce an utterance that conveys the 
target meaning by retrieving a generalization or exemplar 
from its LTM with a similar meaning. 

To populate our model, a set of sentences paired with 
their meaning was generated using an input environment 
grammar and simple lexicon based on those used in Chang 
et al. (2006).  We used the same grammar and lexicon as 
their generator, and compared the results of our generator to 
theirs to ensure that the sets of meaning-sentence pairs we 
produced were essentially the same.  Some of these 
meaning-sentence pairs were set aside as stimuli to use in 
the priming experiments, with a distinct set used to train the 
model, as described below.  Next we describe how these 
pairs were encoded by our simulation, and the training 
process it underwent. 
 

Table 1: Sentence types included in the input environment 
grammar 

 
Sentence type Example Sentence 

Animate intransitive “a man jump –ed” 
Animate with intransitive “the girl walk –s with a dog” 
Inanimate intransitive “the ball bounce –s” 

Locative transitive “a father is go –ing around a 
car” 

Theme-experiencer “a uncle scare –s a cat” 

Cause-motion “the grandfather carry –ed a 
cup to the store” 

Transfer dative “a woman give –s a girl a 
apple” 

Benefactive dative “a man bake –ed a cake for 
the mother” 

Benefactive transitive “the boy push –ed a cake for 
the man” 

State-change “a cat plug –s a sink with a 
cake” 

Locative alternation 

“the father spray –ed paint 
on the sink” 
“a uncle brush –ed a sink 
with pie” 

 

Structure, Structural Priming & Sentence 
Production 

Analogical processing assumes that people use structured, 
relational representations.  Our input encodings, 
automatically produced from message-sentence pairs, reflect 
a reasonable approximation to what people would encode in 
similar situations.  A complete example of the message-
sentence pair representation used by our model can be seen 
in Figure 2. Sentence structure is represented by a series of 
word slot entities (e.g. w1), each corresponding to a word in 
the sequence (e.g. (isa w1 (WordFn 
“grandmother”))).  Sequentiality in the sequence is 
represented by a set of relationships between word slots. 



Semantic structure is represented by entities representing 
abstract thematic role fillers (e.g. x0), whose 
interrelationships are described via binary relations (e.g. 
(roleX a0 x0)).  The referential structure ties the 
thematic roles to their corresponding word slot in the 
sentence structure, e.g. (sameObject x0 
(WordReferentFn w1)).  The use of words in the 
semantic structure (e.g. (isa x0 (WordFn 
“grandmother”))) follows the Chang et al model, which 
used words rather than internal concepts as fillers in their 
meaning representation.  Consequently, we did the same, in 
order to keep the simulations as comparable as possible. 

 
Figure 2: Interrelations between semantic and sentence 

structure through the referential structure layer. 

Seeding LTM via analogical generalization 
  Prior to the priming tests, a training procedure was run to 
seed the system’s Long Term Memory (corresponding to 
Cheng et al.’s Training phase). Our training utilized 
analogical generalization via SAGE. Five examples of each 
of the 24 variants of the 11 construction types in the input 
environment grammar were produced: 120 message-
sentence pairs in total. These stimuli were incrementally 
generalized by SAGE, using a similarity threshold of 0.9. 
This resulted in 45 separate generalizations of message- 
sentence pairs and 15 concrete, ungeneralized message-
sentence exemplars.  SAGE required just one pass through 
the 120 examples, which is two orders of magnitude less 
exposures than the dual-path model required. 

Sentence production 
Given a new semantic message mi, a prime pi, and a set of 
filler message-sentence pairs the prime and fillers are stored 
in STM. Then, the system uses MAC/FAC to find most 
similar semantic message to mi from among the messages 
present in STM, and if that fails, MAC/FAC is used on the 
LTM.  In either case, once a sufficiently similar message is 
retrieved, SME’s alignment of that message-sentence pair 
with the input message produces candidate inferences 
representing hypotheses about the structure of the target 
sentence.  These candidate inferences are used to produce 

sentence structure for the target, by projecting word 
information and order relationships from the retrieved 
utterance (or generalization) to the description of the target 
message. 

Priming Experiments 
We next evaluate the model’s ability to produce sentences 

from messages without primes (Experiment 1) and with two 
kinds of priming alternations (Experiments 2 and 3). All 
three studies used the LTM generated by SAGE as 
described above.  

Experiment 1 
In Experiment 1, we tested the model’s production in two 
LTM-only conditions: a dative production condition and a 
transitive production condition. This examines the models’ 
ability to select a proper grammatical form for messages in 
the absence of specific prime sentences in STM. In each 
condition, the model was given a sequence of 50 examples 
of messages corresponding to the given construction type 
and required to produce a sentence for each. As noted 
above, this means that the model will use MAC/FAC to 
retrieve generalizations and exemplars from the LTM 
contents produced via SAGE to do the generation. 

We applied a twofold evaluation to the output of our 
model, similar to that used by Chang et al. (2006). Each 
sentence produced by the model is evaluated in terms of its 
grammaticality and its message accuracy.   Grammaticality 
measures the degree to which the output sentence matches 
the prototype defined in the input environment grammar. 
Message accuracy measures the degree to which the 
semantic message retrieved from memory maps to the 
target. The results are summarized in Figure 3. As can be 
seen, for both kinds of constructions the model’s message 
accuracy and grammaticality is quite high. Even with an 
extremely limited training set, our analogy-based model 
produces sentences conforming to the grammar of the input.   

Experiment 2 
Next we tested the model’s performance when presented 
with a dative prime from among two alternates: the 
prepositional form and the dative form. We also wished to 
test whether the model would capture the finding that 
structural priming can persist across intervening sentences 
(Bock & Griffin, 2000). Therefore we varied whether there 
were intervening  intransitive filler sentences in STM. This 
led to a 2X2 design: Alternative constructions (prepositional 
dative vs. double-object dative) crossed with Filler 
conditions (no fillers vs. intransitive fillers). 
 In each condition the model was given a sequence of 100 
prime-target pairs with dative messages. The prime 
message-sentence stimulus was stored in STM and the 
system was required to produce an appropriate sentence for 
the target message. In the no-filler condition, no additional 
message-sentence pairs were entered into STM. In the 
intransitive filler condition, 10 intransitive stimuli were 
entered into STM in addition to the prime stimulus. For both 



kinds of constructions, and with fillers and no fillers in 
STM, the model matched the sentence structure of the prime 
in every trial.  That is, the model was able to find a proper 
match in STM on every trial and to map its structure to the 
target without using the LTM store of sentences.  

 

 
 

Figure 3: Sentence production performance of model in 
LTM-only retrieval condition 

Experiment 3 
Next we tested the model’s performance when presented 
with transitive primes that were either active or passive. The 
experiment used the same basic 2x2 design and procedure as 
in Experiment 2, and the same number of prime-target 
message pairs.  As usual, the system first attempted to 
retrieve a structural match from its STM before retrieving 
from its LTM. 
  For both active and passive priming conditions without 
fillers, the model matched the target structure to the prime 
for 100 out of 100 trials using the STM store. When there 
were fillers, the model was able to do so for 98 of the 
passive trials, and 99 of the actives trials. That is, LTM was 
used as a basis for target sentence structure a total of 3 times 
across 400 trials. The model produced grammatically 
appropriate sentences with both STM and LTM retrievals. 

Discussion 
These experiments show that our analogy-based model is 

(1) capable of forming generalizations over meaning-
sentence pairs; (2) able to use its learned memory of 
generalizations and exemplars to produce sentences 
conforming to the input grammar when given a meaning 
(Experiment 1); (3) able to match the structure of prime 
sentences for either the dative alternation  (Experiment 2) or 
the active/passive transitive alternation (Experiment 3). As 
per human data, the presence of intransitive fillers had 
minimal effect on the effects of a prime. The model can 
simulate structural priming when there is no lexical overlap 
between prime and target utterances across structurally 
dissimilar fillers, matching human findings. 

These findings provide evidence for the viability of 
analogical mechanisms in learning constructions and in 
applying them to form utterances. That analogical processes 

readily accommodate both learning and priming phenomena 
is in accord with the idea that the two phenomena are 
intimately related, as suggested by Chang et al (2006). We 
now discuss these two aspects in more detail, including both 
implications and limitations of the current model. We begin 
with structural priming and then turn to grammar learning. 
 
Structural priming 

While the strong priming effects our model shows is 
encouraging support for analogical mapping as a mechanism 
of structural priming, in some sense the model’s 
performance is too good.  Across Experiments 2 and 3, over 
90% of the targets conform to the structure of the prime. 
Priming effects are typically much smaller in humans; in 
general, roughly 60% of targets conform to the prime.   We 
believe there are two reasons for this.  The first is that we 
only consider structural priming, and not other types of 
constraints, such as distributional and semantic preferences 
connected with individual words and phrases, pragmatic 
constraints, and discourse constraints that enter into 
construction selection in natural language use (e.g., Bresnan 
et al., 2007). Chang et al. (2006) dealt with this issue by 
building in a bias into every message towards a particular 
construction; these bias effects can act as a competing (or 
facilitating) force on priming. We are exploring ways to 
capture these effects.  The other reason may be the overly 
strong reliance on an STM buffer in the current model.  
Recall that analogical retrieval is used on LTM only when 
retrieval on STM fails.  This happened only three times 
across Experiments 2 and 3.  We suspect that reducing the 
bias towards STM retrieval, or even eliminating the STM-
LTM distinction entirely, might more closely match human 
data.  Such a model would take into account both recency 
(thereby favoring STM) and strength of generalization 
(favoring LTM). 
 
Learning grammatical patterns 

An intriguing result is the effectiveness of analogical 
generalization, as modeled by SAGE, in learning 
grammatical patterns. SAGE was given only one pass 
through 120 example message-sentence pairs, yet it 
produced a set of generalizations (along with some isolated 
examples) that was sufficient to support the construction of 
grammatically and semantically accurate sentences over 
90% of the time. In contrast, the dual-path model required 
8,000 examples, each trained an average of 7.5 times--
around 60,000 trials.  

Why is our analogical model of construction 
generalization so effective? In an important sense, we 
believe this finding is real: Structural alignment and 
abstraction is a highly effective way of extracting common 
relational structure. For example, Kuehne et al. (2000) used 
SEQL (a predecessor of SAGE) to simulate the Marcus et 
al. (1999) studies, in which 7-month old infants abstracted a 
grammar-like rule from exemplars. The model required only 
the amount of exposure given to the infants—16 strings 
repeated 3 times each, a total of 48 strings.  



However, the obvious challenge to our results is that 
children do not master grammar in 120 utterances, nor even 
after many thousands. We suggest that a major source of the 
disparity lies in the nature of the input. We can characterize 
learning environments on a continuum from high-alignable 
to low-alignable. In a high-alignable environment, the 
learner encounters juxtaposed alignable pairs, as in the 
Marcus et al. studies. Laboratory studies show dramatic 
learning under these conditions (Gentner, 2010). On the 
other hand, children’s language learning takes place in a 
low-alignable environment; they only occasionally receive 
perfectly alignable juxtapositions (Cameron-Faulkner et al., 
2003)   

 
A unified approach to language 

Despite the differences in specific mechanisms between 
our models, we share an important commitment with Chang 
et al.: namely, that the mechanisms of structural priming can 
also be applied to grammar learning in children. Goldwater 
et al. (2011) found a developmental sequence towards less 
reliance on high semantic similarity in structural priming—
an effect specifically predicted by a structure-mapping 
account of grammar learning. There is also evidence that 
analogical processes enter into learning word meanings, 
particularly for relational terms such as verbs (Childers, 
2008). If further studies bear out the hypothesis that 
analogical processes are involved in grammar learning, this 
will implicate analogy as a major force in language learning.  
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